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Table 1 Experimental data on hybrid rocket motor

Pyrometer

Aluminum temperature Maximum chamber
content, % reading, °F pressure, psia

18 4880 395

18 4840 370

18 5110 400

18 4730 365

18 4890 300

40 5080 350

of exhaust products. An average specific heat for the
exhaust products would be, conservatively, 0.25 (cal/g °C).
For 1.0 g of NH,ClO,, therefore,

AT = (—Q/mCp)

where
AT = temperature change, C°~
@ = quantity of heat in calories
m = mass in grams
Cp = specific heat, cal/g °C

AT = (—28.2/1.67 X 0.25) = —67.5°C
AT = —122°F

This temperature change is not considered significant. It is
acknowledged, however, that such a mixing of the solid fuel
and gaseous oxidizer will never be exactly the same as in the
true solid propellant, and good performance will depend on
proper oxidizer injector and motor design.

Experimental Studies

Fuel grains were molded and machined in the form of a hol-
low cylinder, 1.78 in. o.d. X 0.5 in. i.d. X 1.65 in. These
were designed to fit within a small water-cooled rocket motor.
An injector directed oxygen to the fuel grain. Several binder
systems and binder additives were used in the grain formula-
tions. A hydrogen-oxygen pilot was used to ignite the
grain, After 1 to 2 sec of pilot ignition, the main oxygen
valve was opened. All grains ignited without difficulty,
and burned smoothly. The chamber pressure rose rapidly
and reached a steady state value, in most cases, before the
grains were consumed. Chamber pressures as high as 400
psi were recorded. Firing durations were of the order of 4 sec.

A refractory material was placed downstream of the nozzle
exit, and an optical pyrometer was sighted on its surface to
obtain an estimate of the combustion temperature. The
data from these runs are represented in Table 1. Generally,
the data indicate that the combustion temperature was in
the vicinity of 5000°F. This temperature is only slightly
below the 5300°-6400°F range for ammonium perchlorate-
aluminum systems.

Comments

Covariance Matrix Approximation

Lro B. ScHLEGEL*

International Business Machines Corporation,
Bethesda, Md.

The determinant of the covariance matrix of a
trivariate normal distribution is a figure of merit
which relates to error volumes in tracking and pre-
diction problems. In computing this determinant,
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neglect of the covariance elements leads to pessi-~
mistic estimates of system accuracy, hence is a
safe approximation for preliminary analysis. This
property is verified, and a comparison of error
volume results obtained with and without inclusion
of covariance elements is given for different degrees
of correlation between errors.

HE purpose of this note is to call attention to a useful

approximation in error analyses involving trivariate nor-
mal distributions. By way of background, such a distribution
in the error coordinates z,,2, all assumed to be normalized to
zero means, has as density function

playe) = @m) M|~V exp{—}[ayzIM [ayz]"} (1)

where —1 and T indicate matrix inverse and transpose. M is
the symmetric covariance matrix of the distribution, defined by

Oz Ozy Oz
M = | 0ys Oyy Oy )
Oz Ozy Ozz

where .. is the variance of x error, ¢,, = 07, is the covariance
of z and y errors, etc. Taking the errors z, y, 2 to be referred
to rectangular coordinate axes, a rotation of these axes can
always be accomplished by an orthogonal transformation such
that, in the new axis system (denoted by primes), the errors
z',y' e’ are independent. In the primed system, the covari-
ance matrix M’ has as elements of its principal diagonal the
Variances o, ayry, 0,7 of 27y’ 2" errors, with all off-diagonal
elements being zero. The determinant || has the property
that 4/3x|M |2 is equal to the volume of an ellipsoid aligned
with the primed axes and having semi-axes o, = (0,7.7)V?,
ay,0,.  Corresponding to this error volume is a probability
level of about P = 0.2, and other levels can be associated with
similar ellipsoids defined by semi-axes ko, koy ko, where k
is any positive constant.

In many vehicle tracking and prediction problems where
x, y, z are rectangular position coordinate errors, the sizes of
the preceding error volumes (for different %) are taken as
measures of system accuracy, since it is within such volumes,
centered about the measured or computed position of the
vehicle, that it may be expected to lie with different prob-
ability levels P. Thus, |M’] is a fundamental figure of merit.
To calculate |M’], it is not necessary to transform the original
distribution to the primed system in which the errors are
independent, because from the orthogonality of the required
transformation it follows that [M| = |M’|. That is, it is
sufficient to work with the determinant of the covariance
matrix of the original distribution. FEven allowing for this
property, however, it is still inconvenient in preliminary
analyses to have to deal with the covariance elements. The
question then naturally arises as to the type and size of error
introduced by approximating |M| as merely the product of
the principal diagonal variance elements only, i.e., by assum-
ing all covariances to be zero.

The point of the present note is simply this: the foregoing
approximation is a pessimistic or ‘“safe” one, in that the
determinant so obtained is always greater than (or equal to)
the true value of [M| with covariance elements included.
Relating | M| to error volumes, if the accuracy requirements
for a particular system are satisfied for {M| approximated in
this way, a more thorough analysis incorporating covariance
is obviated, for the results can only be more (or equally)
favorable in terms of system performance exceeding require-
ments.

To prove the inequality ¢..0,,0., > M|, introduce corre-
lation coefficients p.y == 044/ (02c04y) 2 and iz, Pye, similarly
defined. Then, by expansion of | M|,

IM] = Oz0yy0s - (sz2 + oo + Pyzz‘_ 2szpxzpyz)] (3)
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Fig. 1 Effect of correlation on error volume approxima-
tion.

In order for the density function (1) to be defined, |M|>0;
hence it remains only to show that the expression involving
the p’s in parentheses in (3) is nonnegative. This follows
from the inequalities

sz2 + Pzzz + pyzz Z pa:y2 + pa:z2 2
: 12szpzzl > lmeszzpuzl @
where use is made of the property that any correlation coeffi-

cient, by definition, cannot exceed unity in absolute value.
Combining the first and last sections of (4),

ps® + P122 + oyt — 2pryPaipy > 0 (5)
and, since |M| > 0, it is concluded from (3) that
Toa0yy 0 > | M| (6)

To give an idea of how the degree of correlation between
the three error variables affects the error volumes previously
described, the ratio |M|Y/2/(04204,0..)Y/? obtained from (3) is
plotted in Fig. 1 as a function of (positive) correlation coeffi-
cient. This ratio is equivalently the ratio of error volumes
calculated with and without the covariance elements included
in M. For simplicity, the three paired correlation coefficients
Pay, Pzey Pye ATE taken here as equal, but the effect of unequal
coeflicients can be roughly inferred from these results. Figure
1 indicates that a relatively high degree of correlation must
exist between the error variables before the error volume is
significantly altered from its approximate value obtained by
considering the errors to be independent. For example, a
common correlation coefficient of 0.5 reduces the actual error
volume to about 0.7 of its approximate value.

Use of the Adjoint System in the
Solution of Two-Point Boundary Value
Problems

Oscar T. Scrurrz*®
Sperry Gyroscope Company, Great Neck, N. Y.

OME papers! 2 have appeared recently on the use of the
adjoint system in solving a two-point boundary value
problem for a system of n first order differential equations.
While the method described is workable, it does not seem to
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have any pronounced advantage over a more obvious method
which makes use of the equations of variation directly and
thereby avoids some of the rather confusing aspects of the
adjoint equations. The special two-point boundary value
problem considered is that of solving the equations

Xt = filel, ..., 2" b) G=1...,m (@
subject to the initial conditions
zi(ly) = o’
and the final (; > ) conditions
zi(t) = b G=r+1,...,n) @

Let yi(f) be the solution (a set of functions) of (1) subject
to the initial conditions

G=1,...,1 @

yilte) = a @G=1,...,n)

where a’t!, . . ., a" are estimates of the unspecified initial
conditions which will produce the final conditions (3), and
suppose that the final values are found actually to be

yilh) = ¢ G=r+1,...,n)
It
zit) = v + E@) @
the equations of variation are
=2 fr ®
ji=1

where f; denotes the partial derivative of fi(z%, . . ., 2" f)
with respect to 27 after the solution functions y*(f) have been
substituted fog the x¢, so that the f;* are known functions
of ¢. The initial and final conditions to be imposed on the
solution of (5) are found from (4) to be

£il) =0 G=1...,7 (6
and
@) =bi—c =4 (@G=r+1,...,n @

where the 87 are known. The problem of solving (5) subject
to (6) and (7) has the same character as that of solving (1)
subject to (2) and (3), but the linearity of Eq. (5) resulting
from the neglect of higher order terms can be exploited to
obtain g solution. Once the solution has been obtained, the
values fort = » 4+ 1, ..., nof &(f) can be found and the un-
specified initial values for ¢+ = r 4+ 1, . . ., n of z%({y) are
approximately a* 4+ £i(t). A new solution y¢ is then obtained
with these estimates, and the entire process is repeated until
convergence is obtained.

Instead of solving Egs. (5-7) directly, the method of ad-
joints introduces a new set of variables A; satisfying the ad-
joint equations

A= — Z_:l fid N 8)

and it is easily seen that any pair of solutions of (5) and (8)
satisfies the relation

2 EN) = 2 Elh®) ©)
i=1 i=1
Now consider n — 7 solutions A*(®) fork =r 4+ 1,..., nof
the adjoint equations subject to the final conditions
NG =0 @=1...,1

)\@k(t1)=61k (2'=r+1,...,n)

which define the values A\*(). One can now write n — r
different versions of Eq. (9)

S BWNW = B = 8 G=rH1,m (0)



